Novel, small molecule inhibitors of PD-L1/PD-1 interaction

 G. Rudresh, P. Daram, R. Gosu, R. Rekha Devi. * Jubilant Therapeutics, Bedminster, NJ, Jubilant Biosys Limited, Bangalore, India

SUMMARY

The PD-1/PD-L1 molecular pathway is one of the primary mechanisms of immune evasion deployed by cancer cells. Induction of PD-L expression on cancer cells is associated with inhibition of immune responses against cancer, thus permitting cancer progression and metastasis. Activatior of PD-1/PD-L1 pathway induces apoptosis of activated T-cells, inhibits the of PD- $1 /$ PD-L1 pathway induces apoptosis of activated T-cells, inhibits thei
proliferation, facilitates T-cell anergy and exhaustion and enhances the proiferation, faciitates T-cell anergy and exhaustion and enhances the
function of regulator T-cells. Therefore, blocking this pathway restores the proliferation and cytotoxicity of CTLs, inhibits the function of Tregs and results in decreased T -cell apoptosis. Although a number of therapeutic antibodies targeting PD-1/PD-L1 have been developed and approved for a number of malignancies, there is a still a need for potent, selective small molecule inhibitors of the PD-1/PD-L1 pathway.

Rational and structure guided de novo design approaches were used design novel small molecule PD-1/PD-L1 pathway inhibitors; potency of these inhibitors was assessed in an in-vitro TR-FRET assay. Checkpoints signaling reporter assays as well as ex-vivo co-culture assays were used to assess the ability of the compounds to restore T-cell proliferation and function

Three novel chemical series as potent PD-1/PD-L1 pathway ibitors are being developed for the treatment of cancer. A representative inhibitor JBI-1527 showcased here exhibited low nM potency in vitro and also highly selective against 27 immuno oncology targets. JBI-1527 also induce the dimerization of the protein and subsequent internalization of PD-L protein, thereby alleviating PD-L1-induced suppression of T cell activation. In Hs746T cells, JBI-1527 treatment showed the inhibitor competes with anti-PD L1 blocking antibody. Similarly, in PD-L1 overexpressed tumor cells JBI-1527 reduced the recombinant PD-1 to PD-L1. In the Bio Map cancer panel screen JBI-1527 showed the enhanced levels of IFN γ, IL-6, TNF- α, IP-10, Col-1, tPA and Keratin 20 and these modulation were similar to the Pembrolizumab. In a CT-26 syngeneic model, oral administration of JBI-1527 at $50 \mathrm{mg} / \mathrm{kg}$ resulted in a strong tumor growth inhibition, comparable to Anti-PD-L1 mAb, and was well tolerated.

Biochemical characterization

JBI-1527 is selective for PD-L1

PD-1/PD-L1 inhibitor induces dimerization
of PD-L1 (U20S cells) of PD-L1 (U2OS cells)

U2OS cells encinered to co expres one recetor subuit fused to Enzyme Dono (ED) U20S cell second dimer partis fused to Enzyme Acceplor (EA). Binding of an agonist to one recepta subun ind it to interact with its dimer partner, which results the functional enzym hydrolyzes a substrate to generate a chemiluminescent signal. JBI-1527 induces dimerizatio of PDL-1 in a concentration dependent manner

BioMAP Colorectal Cancer Pane

JBI-1527 is efficacious in CT-26 and MC38-hPD-L1 syngeneic model

Hs 746 T treated with JBI-1527 for 1.5 h and incubated with Anti-PDL-1 PE (blocking) antibody for 30 min. Mean Fluorescence intensity was analyzed by FACS
locking antibody

Purified T-cells were isolated from human blood was and co-cultured with H5746T cells over-expressing PD-L1 protein in the presence of JBI-1527; Secreted IFNy levels was assessed by ELISA.

JBI-1527 showed strong tumor growth inhibition, comparable to Anti- PD-L1 mAb/Atezolizumab, and was well tolerated
JBI-1527 reduced rPD-1 binding to PD-L1 overexpressed in tumor cells

JB-1527 was incubated with A375 cells over-expressing PD-L1 for 2 . Cells were then co-stained with recombinant PD-1 (and subsequently a fluorochrome conjugated secondary antibody that binds the Fc tail of the rhPD-1) and a fluorochrome conjugated PDL1 antibody; JBI-1527 reduced rPD-1 binding to PD-L1

Conclusions

Small molecule PD-1/PD-L1 inhibitors, in contrast to antibody therapies, can provide increased oral bioavailability, increased bio efficiency and shorted half life activity for a more controllable treatment, particular in the case of auto-immune or other adverse effects.

Further studies to assess additional compounds from the three chemical series are underway. The oral administration route of these PD 1/PD-L1 inhibitors would provide an attractive alternate to the currently available antibodies in treating cancer either as a stand-alone therapy or in combination with other immuno-modulatory agents, as well as other standard of care agents.

